6,004,049

3

There also may be a remote procedure call (RPC) sub-
system on the computer system that facilitates remote pro-
cessing requests between the input device, the computer
system, and remote computers connected to the network. For
example, the RPC subsystem enables software applications
executing on the computer system to display keyboard
overlays on the keys of the input device. Remote method
invocation (RMI) developed by Sun Microsystems, Inc. is
one such RPC subsystem capable of providing these fea-
tures. Those skilled in the art, however, will appreciate that
other RPC subsystems, such as DCOM/COM from
Microsoft, Inc., may be used.

SYSTEM CONFIGURATION

FIG. 1 is block diagram of an exemplary system 100 with
which methods and systems consistent with the present
invention may be implemented. System 100 includes a
computer 101 and a keyboard device 110. Computer 101
includes a memory 102, a CPU 104, a network interface 106
to connect to a network 108, and a bus 107 that provides
connectivity and communication among these components.
Bus 107 uses a bus protocol such as ISA, PCI, or SCSI.
Network 108 may be a Local Area Network (LAN), a Wide
Area Network (WAN), or the Internet.

Memory 102 includes an application 112 and a runtime
system 116. Auser may need a special keyboard layout when
executing application 112. For example, a game application
may use a special set of keys on a keyboard to interact with
the game. Internationalized applications that operate in
different languages may also need a special set of keys on a
keyboard corresponding to the alphabet of a particular
language.

Runtime system 116 provides an execution environment
that enables computer system 101 to process application
112. In one embodiment, runtime system 116 includes a
virtual machine 120, such as the Java™ Virtual Machine,
and an RPC subsystem 118 such as RMI. Application 112
may utilize an Application Programming Interface (API) to
access runtime system 116 and the various subsystems in a
platform-independent manner. The Java™ Virtual Machine,
RMI, and API are provided as part of the Java™ Develop-
ment Kit from Sun Microsystems, Inc. of Mountain View,
Calif.

Virtual machine 120 facilitates platform independence.
Virtual machine 120 is an abstract computing machine that
receives instructions from programs in the form of byte-
codes. These bytecodes are interpreted and dynamically
converted into a form for execution, such as object code, on
a processor such as CPU 104. Virtual machine 120 can be a
process in memory 102 simulating execution of instructions
of a virtual machine or it can be an integrated circuit
processor designed to be compatible with the architecture of
virtual machine 120.

RPC 118 facilitates remote method invocation. Remote
method invocation allows a process executing on one device
to invoke a method or procedure associated with a process
executing on another device. Typically a network connected
between the two computers facilitates communication nec-
essary to perform the remote method invocation.

Keyboard input device 110 includes a processor complex
111 and selectable keyboard display elements 132. Processor
complex 111 includes a memory 126, a display processor
129, a CPU 127, and a non-volatile random access memory
(NVAM) 128. Each component in processor complex 111
may be a collection of discrete processing subsystems or
may be a processor on an integrated circuit (IC) capable of
processing keystrokes and driving selectable keyboard dis-
play elements 132.

10

15

20

25

30

35

40

45

50

55

60

4

Each keyboard display element 132 displays a symbol. In
one implementation, one selectable keyboard display ele-
ment 132 can be an electro-mechanical device actuated
when the user depresses and releases the device. A display
device on each selectable keyboard display element 132
indicates which symbol is generated.

A smartcard reader 134 may be connected to a bus, such
as a serial bus, on keyboard 110. This smartcard reader
interfaces with a smartcard device 135. Smartcard device
135 can hold a useres preferences associated with config-
uring computer system 101 and may also include a keyboard
applet or a user’s preferred keyboard layout. For example,
smartcard device 135 can define the language that selectable
keyboard display elements 132 should display and the keys
for displaying special functions for file management
operations, macro invocations, and other often used func-
tions in applications such as wordprocessors.

Memory 126 includes a keyboard applet 114, a keyboard
layout 115, a runtime system 125, such as the Java™
runtime environment, a virtual machine 122, such as the
Java™ virtual machine, and an RPC 123 subsystem. Sub-
systems in memory 126 operate in a similar manner to like
named subsystems discussed previously. RPC 123 and RPC
118 enable application 112 to invoke methods associated
with keyboard applet 114 executing on keyboard 110.
Applets, such as keyboard applet 114, are modular software
components that perform a subset of functions in a software
application. The applet can be written in a procedural
programming language such as C or an object-oriented
language such as the Java™ programming language.
Typically, virtual machine 122 is used to process methods
associated with keyboard applet 114. For example, actuating
a key on keyboard 110 causes applet 114 to send a keyboard
symbol in the form of a signal back to application 112 for
further processing. This enables application 112 to distribute
execution of instructions on CPU 104 as well as CPU 127.

A keyboard layout 115 provides the data to indicate the
symbols generated when actuating a key on keyboard 110.
Technically, a user actuates a key on a keyboard by depress-
ing a key, releasing a key, or depressing and releasing a key
or combination of keys on the keyboard. In one implemen-
tation consistent with the present invention, keyboard layout
115 may include a look-up table that maps certain keys to
certain functions in an application. By changing the key-
board layout 115, a keyboard 110 has the capability of
generating different symbols on the keycaps.

Keyboard applet 114 can be used to process keyboard
layout 115 in several ways. In one implementation consis-
tent with the present invention, each keyboard applet con-
tains a different keyboard layout. To change a keyboard
layout, computer system 100 downloads a different key-
board applet containing the new keyboard layout from either
host computer 101, network 108, or smart card 134. The
keyboard applet containing the keyboard layout such as
keyboard layout 115 displays the appropriate characters on
selectable keyboard display elements 132. In an alternative
implementation consistent with the present invention, key-
board applet 114 and keyboard layouts are stored separately
on, for example, different parts of network 108. In this
implementation, one keyboard applet can be used to process
many different keyboard applets downloaded over network
108.

In an object-oriented programming environment, a class
loader mechanism, such as the class loader used for the
Java™ programming language, may be used to locate and
download the appropriate keyboard applet, keyboard layout,
and related object classes automatically. Additional infor-



